Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Metabolomics ; 18(11): 81, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2085518

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is strongly linked to dysregulation of various molecular, cellular, and physiological processes that change abundance of different biomolecules including metabolites that may be ultimately used as biomarkers for disease progression and severity. It is important at early stage to readily distinguish those patients that are likely to progress to moderate and severe stages. OBJECTIVES: This study aimed to investigate the utility of saliva and plasma metabolomic profiles as a potential parameter for risk stratifying COVID-19 patients. METHOD: LC-MS/MS-based untargeted metabolomics were used to profile the changes in saliva and plasma metabolomic profiles of COVID-19 patients with different severities. RESULTS: Saliva and plasma metabolites were screened in 62 COVID-19 patients and 18 non-infected controls. The COVID-19 group included 16 severe, 15 moderate, 16 mild, and 15 asymptomatic cases. Thirty-six differential metabolites were detected in COVID-19 versus control comparisons. SARS-CoV-2 induced metabolic derangement differed with infection severity. The metabolic changes were identified in saliva and plasma, however, saliva showed higher intensity of metabolic changes. Levels of saliva metabolites such as sphingosine and kynurenine were significantly different between COVID-19 infected and non-infected individuals; while linoleic acid and Alpha-ketoisovaleric acid were specifically increased in severe compared to non-severe patients. As expected, the two prognostic biomarkers of C-reactive protein and D-dimer were negatively correlated with sphingosine and 5-Aminolevulinic acid, and positively correlated with L-Tryptophan and L-Kynurenine. CONCLUSION: Saliva disease-specific and severity-specific metabolite could be employed as potential COVID-19 diagnostic and prognostic biomarkers.


Subject(s)
COVID-19 , Humans , Metabolomics , SARS-CoV-2 , Saliva/metabolism , Chromatography, Liquid , Kynurenine/metabolism , Tryptophan/metabolism , C-Reactive Protein/metabolism , Sphingosine , Linoleic Acid/metabolism , Aminolevulinic Acid/metabolism , Tandem Mass Spectrometry , Severity of Illness Index , Biomarkers
2.
Clin Chim Acta ; 537: 77-79, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2083217

ABSTRACT

BACKGROUND: The scale and the course of antibody production in patients with SARS-CoV-2 is highly variable. Factors involved in the immune regulation during the infection may play a major role in the antibody response. We investigated the relationship between the inflammatory markers of the kynurenine pathway and the concentration of antibodies against SARS-CoV-2 in infected patients 8 - 11 days after admission. METHODS: The study included 72 SARS-CoV-2 - positive inpatients hospitalized between August 2020 and April 2021. The plasma concentrations of tryptophan, kynurenine, anti-SARS-CoV-2 antibodies and the leucocyte count were measured 8 - 11 days after admission. The kynurenine/tryptophan ratio (KYN/TRP ratio) was calculated. Tertiles based on the values for tryptophan, kynurenine, KYN/TRP ratio and the leucocytes were generated. RESULTS: Statistically significant correlations were observed between anti-SARS-CoV-2 antibodies and tryptophan, kynurenine, KYN/TRP ratio and the leucocytes (p-values < 0.001-0.007). The high kynurenine and KYN/TRP ratio tertiles showed significantly lower antibody titers compared to the low tertiles (p-values 0.017 and < 0.001). The low tryptophan and leucocytes tertiles showed significantly lower antibody titers compared to the high tertiles (p-values 0.001 and 0.008). CONCLUSION: Patients with higher activation levels of the kynurenine pathway tended to develop lower anti-SARS-CoV-2 antibody titers.


Subject(s)
COVID-19 , Kynurenine , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Immunity, Humoral , SARS-CoV-2
3.
Front Immunol ; 13: 1004545, 2022.
Article in English | MEDLINE | ID: covidwho-2065523

ABSTRACT

Introduction: In patients with SARS-CoV-2, innate immunity is playing a central role, depicted by hyperinflammation and longer lasting inflammatory response. Reliable inflammatory markers that cover both acute and long-lasting COVID-19 monitoring are still lacking. Thus, we investigated one specific inflammatory marker involved as one key player of the immune system, kynurenine (Kyn), and its use for diagnosis/detection of the Long-/Post-COVID syndrome in comparison to currently used markers in both serum and saliva samples. Material and methods: The study compromised in total 151 inpatients with a SARS-CoV-2 infection hospitalized between 03/2020 and 09/2021. The group NC (normal controls) included blood bank donors (n=302, 144f/158m, mean age 47.1 ± 18.3 years (range 18-75)). Two further groups were generated based on Group A (n=85, 27f/58m, mean age 63.1 ± 18.3 years (range 19-90), acute admission to the hospital) and Group B (n=66, 22f/44m, mean age 66.6 ± 17.6 years (range 17-90), admitted either for weaning or for rehabilitation period due to Long-COVID symptoms/syndrome). Plasma concentrations of Kyn, C-Reactive Protein (CRP) and interleukin-6 (IL-6) were measured on admission. In Group B we determined Kyn 4 weeks after the negative PCR-test. In a subset of patients (n=11) concentrations of Kyn and CRP were measured in sera and saliva two, three and four months after dismission. We identified 12 patients with Post-COVID symptoms >20 weeks with still significant elevated Kyn-levels. Results: Mean values for NC used as reference were 2.79 ± 0.61 µM, range 1.2-4.1 µM. On admission, patients showed significantly higher concentrations of Kyn compared to NC (p-values < 0.001). Kyn significantly correlated with IL-6 peak-values (r=0.411; p-values <0.001) and CRP (r=0.488, p-values<0.001). Kyn values in Group B (Long-/Post-COVID) showed still significant higher values (8.77 ± 1.72 µM, range 5.5-16.6 µM), whereas CRP values in Group B were in the normal range. Conclusion: Serum and saliva Kyn are reflecting the acute and long-term pathophysiology of the SARS-CoV-2 disease concerning the innate immune response and thus may serve a useful biomarker for diagnosis and monitoring both Long- and Post-COVID syndrome and its therapy.


Subject(s)
COVID-19 , Kynurenine , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers , C-Reactive Protein , COVID-19/complications , COVID-19/diagnosis , COVID-19 Testing , Humans , Interleukin-6 , Kynurenine/metabolism , Middle Aged , SARS-CoV-2 , Tryptophan/metabolism , Young Adult , Post-Acute COVID-19 Syndrome
4.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: covidwho-1973858

ABSTRACT

BACKGROUND: Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS: We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS: Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS: Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.


Subject(s)
Glioma , Oncolytic Viruses , Animals , CD8-Positive T-Lymphocytes/metabolism , Glioma/therapy , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine/metabolism , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Synapses/metabolism , Tumor Microenvironment
5.
BMC Infect Dis ; 22(1): 615, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938292

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is accompanied by activated immune-inflammatory pathways and oxidative stress, which both induce indoleamine-2,3-dioxygenase (IDO), a key enzyme of the tryptophan (TRP) catabolite (TRYCAT) pathway. The aim of this study was to systematically review and meta-analyze the status of the TRYCAT pathway, including the levels of TRP and kynurenine (KYN) and the activity of IDO, as measured by the ratio of KYN/TRP. METHODS: This systematic review searched PubMed, Google Scholar, and Web of Sciences and included 14 articles that compared TRP and tryptophan catabolites (TRYCATs) in COVID-19 patients versus non-COVID-19 controls, as well as severe/critical versus mild/moderate COVID-19. The analysis was done on a total of 1269 people, including 794 COVID-19 patients and 475 controls. RESULTS: The results show a significant (p < 0.0001) increase in the KYN/TRP ratio (standardized mean difference, SMD = 1.099, 95% confidence interval, CI: 0.714; 1.484) and KYN (SMD = 1.123, 95% CI: 0.730; 1.516) and significantly lower TRP (SMD = - 1.002, 95%CI: - 1.738; - 0.266) in COVID-19 versus controls. The KYN/TRP ratio (SMD = 0.945, 95%CI: 0.629; 1.262) and KYN (SMD = 0.806, 95%CI: 0.462; 1.149) were also significantly (p < 0.0001) higher and TRP lower (SMD = - 0.909, 95% CI: - 1.569; - 0.249) in severe/critical versus mild/moderate COVID-19. No significant difference was detected in kynurenic acid (KA) and the KA/KYN ratio between COVID-19 patients and controls. CONCLUSIONS: Our results indicate increased activity of the IDO enzyme in COVID-19 and severe/critical patients. The TRYCAT pathway is implicated in the pathophysiology and progression of COVID-19 and may signal a worsening outcome of the disease.


Subject(s)
COVID-19 , Kynurenine , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Tryptophan/metabolism
6.
Sci Rep ; 12(1): 9959, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1890274

ABSTRACT

SARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS. We assessed whether metabolites alterations were associated with COVID-19, disease severity, and inflammation. The study included 56 patients hospitalized with COVID-19 (26 non-critical and 30 critical disease); 16 healthy controls; and 3 controls with proximal tubule dysfunction unrelated to SARS-CoV-2. Metabolomic profiling revealed a major urinary increase of tryptophan metabolites kynurenine (P < 0.001), 3-hydroxykynurenine (P < 0.001) and 3-hydroxyanthranilate (P < 0.001) in SARS-CoV-2 infected patients. Urine levels of kynurenines were associated with disease severity and systemic inflammation (kynurenine, r 0.43, P = 0.001; 3-hydroxykynurenine, r 0.44, P < 0.001). Increased urinary levels of neutral amino acids and imino acid proline were also common in COVID-19, suggesting specific transport defects. Urine metabolomics identified major alterations in the tryptophan-kynurenine pathway, consistent with changes in host metabolism during SARS-CoV-2 infection. The association between increased urinary levels of kynurenines, inflammation and COVID-19 severity supports further evaluation of these easily available biomarkers.


Subject(s)
COVID-19 , Kynurenine , Biomarkers , Chromatography, Liquid , Humans , Inflammation , Kynurenine/metabolism , Metabolomics , SARS-CoV-2 , Tandem Mass Spectrometry , Tryptophan/metabolism
7.
PLoS Pathog ; 18(3): e1010366, 2022 03.
Article in English | MEDLINE | ID: covidwho-1793485

ABSTRACT

Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses.


Subject(s)
Kynurenine 3-Monooxygenase , Virus Diseases , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Interferon Regulatory Factor-3/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Mice , Quinolinic Acid/metabolism , Quinolinic Acid/pharmacology , Virus Diseases/drug therapy
8.
Proc Natl Acad Sci U S A ; 119(16): e2117807119, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1784076

ABSTRACT

Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insect­a finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynurenine­zinc­chloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathway­well-known modulators of immunity, blood pressure, aging, and neurodegeneration­are physiologically connected.


Subject(s)
Drosophila melanogaster , Kynurenine , Tryptophan , Zinc , Animals , Drosophila melanogaster/metabolism , Fat Body/metabolism , Kynurenine/metabolism , Malpighian Tubules/metabolism , Tryptophan/metabolism , Zinc/metabolism
9.
J Mol Neurosci ; 72(6): 1166-1181, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1756909

ABSTRACT

COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic-pituitary-adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.


Subject(s)
COVID-19 , Depressive Disorder, Major , Depression , Depressive Disorder, Major/drug therapy , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Kynurenine/metabolism , Kynurenine/therapeutic use , Neuroinflammatory Diseases , Oxidative Stress
10.
Front Cell Infect Microbiol ; 12: 815738, 2022.
Article in English | MEDLINE | ID: covidwho-1742205

ABSTRACT

Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.


Subject(s)
COVID-19 , Leprosy , Peripheral Nervous System Diseases , COVID-19/complications , Humans , Kynurenine/metabolism , Leprosy/complications , SARS-CoV-2 , Tryptophan/metabolism
11.
Cells ; 11(4)2022 02 13.
Article in English | MEDLINE | ID: covidwho-1686622

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the pathogenic agent of Coronavirus-Induced Disease-2019 (COVID-19), a multi-organ syndrome which primarily targets the respiratory system. In this review, considering the large amount of data pointing out the role of the Aryl hydrocarbon Receptor (AhR) in the inflammatory response and in the modulation of innate and adaptive immunity, we describe some mechanisms that strongly suggest its involvement in the management of COVID-19's inflammatory framework. It regulates both the expression of Angiotensin Converting Enzyme-2 (ACE-2) and its stabilizing partner, the Broad neutral Amino acid Transporter 1 (B0AT1). It induces Indolamine 2,3 dioxygenase (IDO-1), the enzyme which, starting from Tryptophan (Trp), produces Kynurenine (Kyn, Beta-Anthraniloyl-L-Alanine). The accumulation of Kyn and the depletion of Trp arrest T cell growth and induce apoptosis, setting up an immune-tolerant condition, whereas AhR and interferon type I (IFN-I) build a mutual inhibitory loop that also involves NF-kB and limits the innate response. AhR/Kyn binding boosts the production of Interleukin-6 (IL-6), thus reinforcing the inflammatory state and counteracting the IDO-dependent immune tolerance in the later stage of COVID-19. Taken together, these data depict a framework where sufficient clues suggest the possible participation of AhR in the management of COVID-19 inflammation, thus indicating an additional therapeutic target for this disease.


Subject(s)
COVID-19/metabolism , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2/metabolism , Adaptive Immunity/immunology , Amino Acid Transport Systems, Neutral/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , COVID-19/immunology , COVID-19/transmission , Humans , Immunity, Innate/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Kynurenine/metabolism , Receptors, Aryl Hydrocarbon/physiology , SARS-CoV-2/pathogenicity , Signal Transduction , Tryptophan/metabolism
12.
J Clin Lab Anal ; 36(3): e24257, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1653266

ABSTRACT

BACKGROUND: It is known that inflammatory responses play an important role in the pathophysiology of COVID-19. AIMS: In this study, we aimed to examine the role of kynurenine (KYN) metabolism on the severity of COVID-19 disease AQ5. MATERIALS & METHODS: Seventy COVID-19 patients of varying severity and 30 controls were included in the study. In addition to the classical laboratory parameters, KYN, tryptophan (TRP), kynurenic acid (KYNA), 3 hydroxykynurenine (3OHKYN), quinolinic acid (QA), and picolinic acid (PA) were measured with mass spectrometry. RESULTS: TRP, KYN, KYN:TRP ratio, KYNA, 3OHKYN, PA, and QA results were found to be significantly different in COVID-19 patients (p < 0.001 for all). The KYN:TRP ratio and PA of severe COVID-19 patients was statistically higher than that of mild-moderate COVID-19 patients (p < 0.001 for all). When results were examined, statistically significant correlations with KYN:TRP ratio, IL-6, ferritin, and procalcitonin were only found in COVID-19 patients. ROC analysis indicated that highest AUC values were obtained by KYN:TRP ratio and PA (0.751 vs 0.742). In determining the severity of COVID-19 disease, the odd ratios (and confidence intervals) of KYN:TRP ratio and PA levels that were adjusted according to age, gender, and comorbidity were determined to be 1.44 (1.1-1.87, p = 0.008) and 1.06 (1.02-1.11, p = 0.006), respectively. DISCUSSION & CONCLUSION: According to the results of this study, KYN metabolites play a role in the pathophysiology of COVID-19, especially KYN:TRP ratio and PA could be markers for identification of severe COVID-19 cases.


Subject(s)
COVID-19 , Kynurenine/metabolism , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/physiopathology , Female , Humans , Kynurenic Acid/blood , Male , Middle Aged , Picolinic Acids/blood , Prognosis , Quinolinic Acid/blood , SARS-CoV-2 , Tryptophan/blood
13.
PLoS One ; 16(12): e0259909, 2021.
Article in English | MEDLINE | ID: covidwho-1546944

ABSTRACT

This study investigated the association between COVID-19 infection and host metabolic signatures as prognostic markers for disease severity and mortality. We enrolled 82 patients with RT-PCR confirmed COVID-19 infection who were classified as mild, moderate, or severe/critical based upon their WHO clinical severity score and compared their results with 31 healthy volunteers. Data on demographics, comorbidities and clinical/laboratory characteristics were obtained from medical records. Peripheral blood samples were collected at the time of clinical evaluation or admission and tested by quantitative mass spectrometry to characterize metabolic profiles using selected metabolites. The findings in COVID-19 (+) patients reveal changes in the concentrations of glutamate, valeryl-carnitine, and the ratios of Kynurenine/Tryptophan (Kyn/Trp) to Citrulline/Ornithine (Cit/Orn). The observed changes may serve as predictors of disease severity with a (Kyn/Trp)/(Cit/Orn) Receiver Operator Curve (ROC) AUC = 0.95. Additional metabolite measures further characterized those likely to develop severe complications of their disease, suggesting that underlying immune signatures (Kyn/Trp), glutaminolysis (Glutamate), urea cycle abnormalities (Cit/Orn) and alterations in organic acid metabolism (C5) can be applied to identify individuals at the highest risk of morbidity and mortality from COVID-19 infection. We conclude that host metabolic factors, measured by plasma based biochemical signatures, could prove to be important determinants of Covid-19 severity with implications for prognosis, risk stratification and clinical management.


Subject(s)
COVID-19/pathology , Metabolome , Metabolomics/methods , Adult , Aged , Area Under Curve , COVID-19/mortality , COVID-19/virology , Carnitine/metabolism , Citrulline/metabolism , Female , Glutamic Acid/metabolism , Humans , Kynurenine/metabolism , Male , Middle Aged , Ornithine/metabolism , ROC Curve , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tryptophan/metabolism
14.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1512377

ABSTRACT

Tryptophan is an essential amino acid whose metabolites play key roles in diverse physiological processes. Due to low reserves in the body, especially under various catabolic conditions, tryptophan deficiency manifests itself rapidly, and both the serotonin and kynurenine pathways of metabolism are clinically significant in critically ill patients. In this review, we highlight these pathways as sources of serotonin and melatonin, which then regulate neurotransmission, influence circadian rhythm, cognitive functions, and the development of delirium. Kynurenines serve important signaling functions in inter-organ communication and modulate endogenous inflammation. Increased plasma kynurenine levels and kynurenine-tryptophan ratios are early indicators for the development of sepsis. They also influence the regulation of skeletal muscle mass and thereby the development of polyneuromyopathy in critically ill patients. The modulation of tryptophan metabolism could help prevent and treat age-related disease with low grade chronic inflammation as well as post intensive care syndrome in all its varied manifestations: cognitive decline (including delirium or dementia), physical impairment (catabolism, protein breakdown, loss of muscle mass and tone), and mental impairment (depression, anxiety or post-traumatic stress disorder).


Subject(s)
Critical Illness , Kynurenine/metabolism , Tryptophan/deficiency , Delirium/etiology , Depression/etiology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/metabolism , Melatonin/biosynthesis , Muscle, Skeletal/metabolism , Sepsis/metabolism , Serotonin/biosynthesis
15.
Biol Direct ; 16(1): 18, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1477451

ABSTRACT

Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.


Subject(s)
COVID-19/therapy , Immune System/physiology , Muscles/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , COVID-19/immunology , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Insulin-Like Growth Factor II/metabolism , Interferon-gamma/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Macrophages/metabolism , Mice , Muscles/metabolism , Oxidative Phosphorylation , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/chemistry , Tumor Necrosis Factor-alpha/metabolism
16.
Mediators Inflamm ; 2021: 2911578, 2021.
Article in English | MEDLINE | ID: covidwho-1455770

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Subject(s)
Bone Diseases/etiology , COVID-19/complications , Kynurenine/metabolism , Muscular Diseases/etiology , SARS-CoV-2 , Tryptophan/metabolism , Animals , Humans , Receptors, Aryl Hydrocarbon/physiology , Signal Transduction/physiology
17.
Neuropharmacology ; 198: 108766, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1376075

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.


Subject(s)
COVID-19/epidemiology , Drug Misuse/statistics & numerical data , SARS-CoV-2 , Substance-Related Disorders/epidemiology , Adaptation, Psychological , Angiotensin-Converting Enzyme 2/physiology , Animals , Axons/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/psychology , Comorbidity , Disease Susceptibility , Endothelial Cells/virology , Humans , Immunity, Innate , Inflammation/etiology , Kynurenine/metabolism , Neurons/virology , Neurotransmitter Agents/metabolism , Olfactory Mucosa/virology , Pandemics , SARS-CoV-2/physiology , Social Isolation , Stress, Psychological , Substance-Related Disorders/etiology , Substance-Related Disorders/physiopathology , Tryptophan/metabolism , Viral Tropism
18.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1217090

ABSTRACT

The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions.


Subject(s)
COVID-19/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/pathology , Ceramides/blood , Ceramides/metabolism , Female , Hospitalization , Humans , Kynurenine/blood , Kynurenine/metabolism , Male , Metabolomics , Middle Aged , Prospective Studies , Severity of Illness Index , Tryptophan/blood , Tryptophan/metabolism
19.
Drug Discov Today ; 26(6): 1473-1481, 2021 06.
Article in English | MEDLINE | ID: covidwho-1086904

ABSTRACT

The novel respiratory virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), emerged during late 2019 and spread rapidly across the world. It is now recognised that the nervous system can be affected in COVID-19, with several studies reporting long-term cognitive problems in patients. The metabolic pathway of tryptophan degradation, known as the kynurenine pathway (KP), is significantly activated in patients with COVID-19. KP metabolites have roles in regulating both inflammatory/immune responses and neurological functions. In this review, we speculate on the effects of KP activation in patients with COVID-19, and how modulation of this pathway might impact inflammation and reduce neurological symptoms.


Subject(s)
COVID-19 , Cognition , Inflammation/metabolism , Kynurenine/metabolism , Sulfonamides/pharmacology , Thiazoles/pharmacology , Tryptophan/metabolism , Animals , COVID-19/immunology , COVID-19/psychology , Cognition/drug effects , Cognition/physiology , Humans , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Signal Transduction
20.
Biosci Rep ; 40(10)2020 10 30.
Article in English | MEDLINE | ID: covidwho-989979

ABSTRACT

COVID-19 induces a proinflammatory environment that is stronger in patients requiring intensive care. The cytokine components of this environment may determine efficacy or otherwise of glucocorticoid therapy. The immunity modulators, the aryl hydrocarbon receptor (AhR) and the nuclear NAD+-consuming enzyme poly (ADP-ribose) polymerase 1 (PARP 1) may play a critical role in COVID-19 pathophysiology. The AhR is overexpressed in coronaviruses, including COVID-19 and, as it regulates PARP gene expression, the latter is likely to be activated in COVID-19. PARP 1 activation leads to cell death mainly by depletion of NAD+ and adenosine triphosphate (ATP), especially when availability of these energy mediators is compromised. PARP expression is enhanced in other lung conditions: the pneumovirus respiratory syncytial virus (RSV) and chronic obstructive pulmonary disease (COPD). I propose that PARP 1 activation is the terminal point in a sequence of events culminating in patient mortality and should be the focus of COVID-19 immunotherapy. Potent PARP 1 inhibitors are undergoing trials in cancer, but a readily available inhibitor, nicotinamide (NAM), which possesses a highly desirable biochemical and activity profile, merits exploration. It conserves NAD+ and prevents ATP depletion by PARP 1 and Sirtuin 1 (silent mating type information regulation 2 homologue 1) inhibition, enhances NAD+ synthesis, and hence that of NADP+ which is a stronger PARP inhibitor, reverses lung injury caused by ischaemia/reperfusion, inhibits proinflammatory cytokines and is effective against HIV infection. These properties qualify NAM for therapeutic use initially in conjunction with standard clinical care or combined with other agents, and subsequently as an adjunct to stronger PARP 1 inhibitors or other drugs.


Subject(s)
Coronavirus Infections/drug therapy , Niacinamide/pharmacology , Pneumonia, Viral/drug therapy , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Betacoronavirus/drug effects , COVID-19 , Cell Line , Coronavirus Infections/pathology , Cytokines/blood , Humans , Immunotherapy/methods , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Pandemics , Pneumonia, Viral/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL